CORRESPONDENCE 525
where
2 2 2
Fo = {J5(Kry) + Ji(Kqry) — FL(KNE)JO(KNH) (17
1t
G, = K2+ 2 (18)
G, =Ki—-p3 (19
272 22212 | f 2 2 2 2K, (
P = 4K{J3(K 1)) + 721 FiK3 | (Fo — Ji(Kr )} { Koy, — K1} +r—J1(K1r1)J0(K1r1)L1 - i} (20)
1
Fy = Jo(Kyr)Y{(Kymry) — Yo(Kor W (Komry) @1
K2 did + ¢t
P= K+ 2 =k + KD+ K330 9 @)
P, = {Kint + (a — K3} — (K3 — KT) + d33(KIKD{p,t + plla — 1)}, (23)

Evaluation of tan, é and tan,, &

tan, & and tan,, é are evaluated from mea-
surements of Q for the two configurations. The
procedure for evaluating tan, é and tan,, é from
these Q values is exactly the same as in the earlier
techniques,!-? except that the resulting equa-
tions are a lot more complex and tedious to
compute.

However, by choosing the total cavity length
to be at least four half wavelengths, and if the
Q of the cavity drops to at least 2/3 of its value
by inserting the sample by half a wavelength,
one may take certain approximations? which
simplify the expressions very considerably and
mtroduce an error of the order of 2 to 4 percent
in the evaluation of tan, § and tan,, . These
expressions are given below. If Q, is the loaded
Q for zero insertion, and @, the loaded @ for an
insertion by half a wavelength, one obtains

CONCLUSIONS

These techniques offer the possibility of very
quick and accurate evaluation of permittivity
and permeabulity of a broad range of specimen
dimensions, both in the form of rods and slabs
if the suitable charts are prepared. In addition,
these are the only available techniques based on
accurate theoretical solutions, in which one
may evaluate all four parameters using only a
single specimen, resulting in an enormous con-
venience.

J. K. SiNHA
Amphenol RF Division
Danbury, Conn. 06810

Design of TEM Equal Stub
Admittance Filters

Filters formed in TEM transmission lines
by short-circuited stubs that are 4/4 in length at
the design center frequency and separated by
the same length have useful bandpass properties
in wideband (typically 10 percent to one-octave
bandwidth) applications.

The usual design of a filter of this typeis fora
maximally flat or Chebyshev response, which
requires a tapering of the characteristic admit-
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tances of the stubs [1]. The procedure described
here, which may be used successfully in many
applications, requires that the stub admittances
all be equal. In those applications where maxi-
mum flatness or equal ripple are not required,
this 1s a simple, inexpensive, and easily designed
structure.

The theoretical approach described here is
similar to that of Mumford [1], in which we
first state the form of our filter and then analyze
on the basis of the exact filter model. This ap-
proach very quickly gave us the insertion loss
characteristics we were seeking.

Another approach to TEM filter synthesis is
to use the Richards’ transformation and the
Kuroda identities [2]. Various “optimum”
structures in the Butterworth or Chebyshev
sense have been analyzed wherein a network is
synthesized to approximate a desired function.
This approach has not been necessary in this
case.

The analytical expressions for insertion loss
are derived for any number of resonators. The
assumption of dissipationless filters was made;
dissipation is negligible for the relatively wide-
band filters considered here. Curves are avaii-
able for one to eight resonators, which enables
a systematic design. Bandwidth, insertion loss,
and characteristic admittance may be rigorously
determined in specific applications. Examples of
this are given. A bandpass filter is tested and the
results are shown to agree with the predictions
of the theory.

Using well-known techniques, a model is
analyzed for the TEM structures considered.
Figure 1 shows a form suitable for the purposes
of our analysis. The resonators are considered
lossless. The mathematical derivation is briefly
outlined here.

The filter is considered lossless, linear, pas-
sive, reciprocal, and symmetrical. The insertion
loss is given by

By — Cy)?
L:lO]og[l—(L_")],

4

where By and Cy are determined from
A B _ |4~y By
C D| | Cy Dy

This ABCD matrix is for a single (line-stub-
line) section. This is then multiplied N times
using techniques described elsewhere [3].

The insertion loss is given by

K2q2
L =10log<t + ——-
41— g%

Pﬁ,[Zq <1 ; ?)]} (n

1) K=characteristic admittance of stub
resonator normalized to line ad-
mittance,

2) N=number of stubs,

3) g=cos O=cos (2rd/A) where d is the

stub length, and

4) Py =Chebyshev polynomial of the second
kind.

where

This expression has been plotted for N=1
through 8 with K as a parameter and ¢ as the
abscissa.! Curves for N=3, 4, and 7 are shown
in Figs. 2, 3, and 4, respectively.

As far as these graphs are concerned, we
may immediately state the following. We have
g=cos 0, so q varies as —1<g<1 as § or 4
varies. At q=0, the insertion loss is zero for all
N and K. At g= + 1, the insertion loss is infinity
for all N and K. In addition, P is an even func-
tion of g, so that it is only necessary to plot the
region 0<g<1 due to symmetry. All values of
A of interest are mapped in this region.

It is seen from (1) that, for N=1 and N=2,
the quarter-wave shorted-stub filter is identical
to the maximally flat filter of Mumford [1].

The next section gives design examples and
insertion loss curves. With the use of (1), we may
easily derive approximate equations for specific
regtons of the insertion loss characteristic. These
are useful when a curve is not available. We do
not reproduce these approximations, since there
are so many depending on the region of interest.

As a design example let it be required to have
a bandpass TEM filter with a minimum 3-dB
bandwidth of 630 MHz or 70 percent, a center
frequency of 900 MHz, and a minimum rejection
of 20 dB at 900+ 500 MHz. Each of our stubs
must be 4/4 in length or 8.33 cm at 900 MHz.
The 70-percent bandwidth corresponds to a
3-dB frequency of ¢=0.525 and a 20-dB fre-
quency of ¢=0.766. Examination of the curves
show that a filter of N=4 and K=1.4(35.7-ohm
stubs) will do the job. The ripple will be 0.3 dB
at one point and this will be adequate for many
applications.

! Complete graphs are available from ADI Auxillary
Publications Program.
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Fig. 1. Equal stub admittance bandpass filter structure. (a) Schematic. {b) Typical iterative section.
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As a second example, consider a bandpass
filter with a center frequency of 1000 MHz, a
minimum 3-dB bandwidth of 100 percent, and
a20-dB rejection from at least 133 to 1867 MHz.
The ripple is to be less than 0.05 dB.

We easily calculate the resonator length as
7.5 cm. The 3-dB frequency is calculated as
¢=0.707, and the 20-dB frequency as ¢=0.98.
Examination of the curves shows that a three-
resonator filter with K=0.8 (62.5-ohm stubs)
will satisfy the requirements.

Many other possibilities are open. For ex~
ample, the designer may examine the curves to
see if the characteristics of his filter may be
satisfied by the filters considered, and use this
design instead of one which may be ‘“over-
designed.” It must be determined if maximally
flat or equal ripple response is really required.
The filters also have bandstop properties, de-
pending on the definition of center frequency.

These filters are not “optimum” designs in
the sense of minimum number of resonators,
best skirt response, etc. They are easily designed
devices which, when they can be used, are quite
functional.

To verify the theoretical results, a three-
resonator quarter-wave shorted-stub coaxial
filter was tested. The normalized characteristic
admittance of the stub (K) was unity. The filter
center frequency was 4700 MHz and its 3-dB
bandwidth was 6400 MHz. Experimental and
theoretical curves are shown in Fig. 5. The
agreement is very close. The midband loss of the
filter tested was about 0.2 dB, and the zero in-
sertion loss design was shown to be valid.

In conclusion, we may say that the insertion
loss versus frequency characteristics have been
calculated for a class of equal stub admittance
filters. Analytical expressions have been derived
for any number of resonators, and graphs of
the results have been prepared for from one to
eight resonators. It was shown how the informa-
tion presented enables the systematic design of
filters of this class on the basis of insertion loss.
It was also shown how bandwidth, admittance,
etc., may be rigorously determined for specific
cases of interest. The insertion loss curves are
presented along with information as to their use
and other pertinent theoretical material. Ex-
perimental verification of the theory has been
presented. Further work along these lines that
could be considered would concern other stub
and line lengths, loss, time delay, and the
analysis of transient response.

H. J. HinDpiN?

LEL Division of Varian Associates
Copiague, L.1,N. Y.

J. J. Taus

Airborne Instruments Lab.
Division of Cutler-Hammer, Inc.
Melville, L. 1., N. Y.
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On the Design of Stepped
Transmission-Line Transformers

Abstract—The problem of matching a com-
plex load impedance to a given transmission line
using a series matching transformer is considered
with a view to minimizing the transformer length
and overall insertion loss. A graphical technique
is presented that leads to a solution for the length
and characteristic impedance of the transformer
section. It is shown that this transformer reduces
to the usual quarter-wave transformer for the par-
ticular case where the load is purely resistive. The
performance of the transformer is also compared
with the quarter-wave transformer for the case of
a complex load impedance and a numerical exam-
ple is given. It is shown that the design procedure
is relatively simple and may lead to a significant
reduction in the overall length and insertion loss of
the matching section. While there is no significant
improvement in the bandwidth for frequency-de-
pendent loads, the proposed design still offers at-
tractive features for matching transmitting an-
tennas,

Present techniques for matching a radio-
frequency transmission line to a given complex
load impedance are based on cancelling the in-
put reactance (or susceptance) of the load, as
seen from a pair of available terminals, and
transforming the real part to that of the given
iine. Common examples that employ this con-
jugate matching technique are the open- and
short-circuited parallel stubs and the quarter-
wave series transformer. The design procedure

for single and multiple sections of these devices
have been amply discussed in the literature [1]-
[3]

The purpose of this correspondence is to
present a simple graphical method for designing
a single transmission-line cable suitable for
matching a complex load impedance at a single
frequency. To show this we consider the situa-
tion in Fig. 1 where the matching section of un-
known length d and characteristic impedance
Z, is inserted between the Ioad Z; and the feed
line. The input impedance Z_ at the junction of
the two lines 1s given by the relation [1],

Z, + Zytanh (yd)

oL T s i, 1
Z; + Z, tanh (yd) @

Z, = Z,

where the propagation constant y is the sum of
the attenuation constant o and the phase con-
stant . Equating the real terms to R and the
imaginary terms to zero, we obtain after some
simplification:

2— p—
Zy=r

@

172 x?
S G

where y=tan (fd) for «—0, r=R,/R, x=x/R,
Zy=Zy/R, and f=2x/A. Equation (3) may be
rewritten in the more convenient form:

(1 — % 2
m + x*=0. (3a)

z,

R = characteristic Impedance
of the Feed Tr issi

=R +jx.

—q —

d,z, =length and characteristic
Imped of the

Line

Fig. 1.

Matching Transformer

Schematic diagram of the matched load Z, .
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Reflection coefficient versus frequency.



